

Acoustic Test Laboratory

The University of Salford Salford, Greater Manchester M5 4WT, United Kingdom

T: +44 (0) 161 295 3814 E: acoustic.testing@salford.ac.uk

TEST REPORT No: 06199-6030 DATE OF ISSUE: 01 August 2023

Page 1 of 11

BS EN ISO 354:2003

Acoustics - Measurement of Sound Absorption in a Reverberation Room

Client: GIK Acoustics Europe

Job Number: 06199

Sample Reference: 244

Date(s) of Test: 24 May 2023

Signed: L Cambidge

Specialist Acoustics Technician

Laboratory Manager

Contents

1.	Test	Samples	. 3			
	1.1.	Description of Test Samples	. 3			
		Test Reference: 06199-6030				
		Photographs				
2.	Desc	cription of Test Procedure	. 5			
	2.1.	Description of Test Facility	. 5			
	2.2.	Test Procedure	. 5			
	2.3.	Calculation	. 6			
3.	3. Equipment					
1	Resi	ults	ç			

Client Details: GIK Acoustics Europe

Unit F

Perseverance Mills

Giles Street, Wibsey

BD06 3HS

Manufacturer: Client

Mounting Type: Type A Mounting

Date Order Received: 30 March 2023

1. <u>Test Samples</u>

The following sample was installed in the large reverberation room of the University of Salford Acoustic Test Laboratory. It was installed in accordance with Annex B of BS EN ISO 354:2003. All information regarding the samples comes from laboratory measurements unless marked with "cs" or otherwise stated.

Absorption measurements include 50 Hz, 63 Hz and 80 Hz which are outside of the scope of the standard and are NOT UKAS Accredited.

1.1. Description of Test Samples

1.2. Test Reference: 06199-6030

Sample Reference cs: 244

Sample Description: Absorption Panels - Type A Mounting

Fifteen absorption panels were laid onto the concrete floor of the reverberation room by the client. Each panel consisted of a timber frame, surrounding an absorbent infill, enclosed in a textile with a small gap at the back. No frame was installed around the sample and the sides are not included in the sample area as the timber frame is assumed to be totally reflective.

Sample area: $3628 \times 3030 \text{ mm}$

Thickness: 115 mm

Mass per unit area: 7.5 kg/m^2

1.3. Photographs

2. Description of Test Procedure

2.1. Description of Test Facility

The tests were carried out in the large reverberation room at the University of Salford. The room has been designed with hard surfaces and non-parallel walls to give long empty room reverberation times with uniform decays. It has the shape of a truncated wedge. In addition, 18 plywood panels, of various sizes, were hung in the room to improve the diffusivity of the sound field. The test sample was placed in the centre of the floor. The excitation signal comprised wide band random noise played into the room via two dodecahedron, omnidirectional loudspeakers mounted in room corners. The sound was monitored at each of 6 microphone positions. The room is 7.4 m long \times ~6.6 m wide \times 4.5 m high with a volume of 220 m³ and a total surface area of 224 m². The volume of the room permits a maximum sample size of 12.79 m² to be tested, in accordance with Clause 6.2.1.1 in BS EN ISO 354: 2003, "Acoustics - Measurement of sound absorption in a reverberation room".

2.2. Test Procedure

The procedure followed that detailed in BS EN ISO 354. Measurements were made on the rate of decay of sound in the test chamber with and without the sample in place. The frequency range from 50 Hz to 5000 Hz was covered in one-third octave bands (50, 63 and 80 Hz are not included in BS EN ISO 354 and are not UKAS accredited). An average reverberation time was taken from five decays at each of six microphone positions for each of two loudspeaker positions (i.e. 60 decays per third octave band). The decays were produced by exciting the room with amplified wide band random noise and stopping the excitation once the chamber became saturated. The time taken for the sound to decay by a given amount is measured and extrapolated to give the reverberation time. In practice this was determined by sampling the decaying sound field on a one-third octave band frequency analyser and storing the spectrum in a computer. The reverberation time was obtained from the arithmetically averaged decays at each frequency. The measurements with and without the sample in the room were carried out consecutively to avoid significant changes in relative humidity and temperature that influence air absorption at higher frequencies.

2.3. Calculation

The random incidence sound absorption coefficients were determined from the measured data by means of the equations below:

$$\alpha_{\rm s} = \frac{A_{\rm T}}{S}$$

Where

 α_s is the absorption coefficient of the sample

S is the area covered by the test specimen (m^2)

 $A_{\rm T}$ is the equivalent sound absorption area of the test specimen (m²)

$$A_T = A_2 - A_1 = 55.3V \left(\frac{1}{c_2 T_2} - \frac{1}{c_1 T_1}\right) - 4V(m_2 - m_1)$$

 A_I is the equivalent sound absorption area of the empty reverberation room (m²).

 A_2 is the equivalent sound absorption area of the room reverberation containing the test specimen (m²).

V is the volume, in cubic metres, of the empty reverberation room:

 c_1 is the propagation speed of sound at air temperature t_1 ;

 c_2 is the propagation speed of sound at air temperature t_2 ;

 T_1 is the mean reverberation times of the empty reverberation room in each frequency band (sec).

 T_2 is the mean reverberation times of the reverberation room containing the test specimen in each frequency band (sec)

 m_1 is the power attenuation, in reciprocal metres, using the climatic conditions that have been presented in the empty reverberation room.

 m_2 is the power attenuation, in reciprocal metres, using the climatic conditions that have been presented in the reverberation room containing the test specimen.

The single-number rating, α_W , has been calculated in accordance with BS EN ISO 11654:1997, *Acoustics – Sound absorbers for use in buildings – Rating of sound absorption*.

(No correction is applied for the absorption of the surface covered by the test sample)

3. **Equipment**

Equipment	Laboratory Equipment Record No.
Norwegian Electronics 1/3 octave band real time analyser type 850 with in-built random noise generator	RTA3-07 to 12
Quad 510 power amplifier	PA7
Norsonic Sound Calibrator type 1251	C8
2 × Norsonic Dodecahedron Loudspeakers	LS10-LS11
$2\times Bruel\ \&Kjaer$ random incidence condenser microphone type 4166 in the receiving room	M9, M18
$4\times G.R.A.S.$ random incidence condenser microphones type 40AP in the receiving room	M20, M31, M19, M32
Environmental sensor data logger, hygrometers and barometer	HL1, HG2, BM3
Toshiba TECRA R850 119 laptop computer and related peripheral equipment (network switch, printer, monitor etc.)	RTA3-00
Yamaha GQ1031BII graphic equalizer	GEQ1

4. Results

The random incidence sound absorption coefficients, α_S , are given in the tables over leaf. Results at frequencies between 100 Hz and 5000 Hz are included in the standard, BS EN ISO 354:2003 and are UKAS accredited. Results at frequencies 50 Hz, 63 Hz and 80 Hz are also presented but these are not within the scope of the BS EN ISO 354:2003 and are NOT UKAS accredited.

Also given are the octave-band practical sound absorption coefficients, α_{pi} , and the weighted sound absorption coefficient, α_{W} .

The results here presented relate only to the items received, tested and described in this report.

BS EN ISO 354:2003

Acoustics - Measurement of absorption in a reverberation room

Client: GIK Acoustics Europe

Unit F, Perseverance Mills, Giles Street, Wibsey,

BD06 3HS

Sample Reference: 244

Description of Sample: Absorption Panels - Type A Mounting

Frequencies 50, 63 and 80Hz not accredited

Sample Thickness: 115.0 mm Condition: Clean

Sample Out Sample In

Temperature20.9 °CTemperature20.8 °CRelative Humidity50.2 %Relative Humidity46.8 %Static Pressure102.4 kPaStatic Pressure102.4 kPa

Random Incidence Sound Absorption Coefficient

Frequency	T_{1}	T_2	O.
[Hz]	[s]	[s]	α_{S}
50	7.53	6.85	0.04
63	5.79	4.46	0.17
80	5.95	4.53	0.17
100	5.09	2.76	0.53
125	4.56	2.25	0.72
160	5.13	2.05	0.95
200	5.89	1.97	1.09
250	6.85	1.90	1.23
315	6.43	1.85	1.24
400	6.24	1.84	1.24
500	6.31	1.83	1.25
630	6.16	1.87	1.21
800	5.96	1.89	1.17
1000	5.46	1.89	1.12
1250	5.01	1.85	1.10
1600	4.56	1.80	1.08
2000	4.09	1.71	1.09
2500	3.46	1.57	1.11
3150	2.93	1.44	1.12
4000	2.27	1.25	1.12
5000	1.95	1.15	1.09

Test reference: 06199-6030 Date: 24 May 2023

University of Salford, School of Computing Science & Engineering

BS EN ISO 354:2003

Acoustics - Measurement of absorption in a reverberation room

Client: GIK Acoustics Europe

Unit F, Perseverance Mills, Giles Street, Wibsey,

BD06 3HS

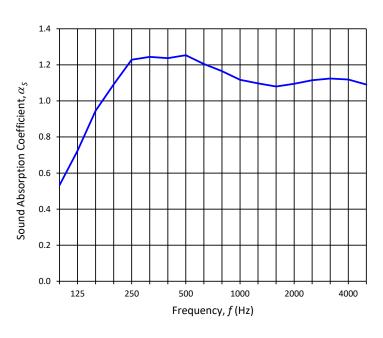
Sample Reference: 244

Description of Sample: Absorption Panels - Type A Mounting

Frequencies 50, 63 and 80Hz not accredited

Room Volume: 220 m³ Location: Acoustic Transmission Suite Sample Size: 10.99 m² Test Room Large reverberation Room

Sample Thickness: 115.0 mm Condition: Clean


Sample Out

Temperature 20.9 °C Temperature 20.8 °C Relative Humidity 50.2 % Relative Humidity 46.8 % Static Pressure 102.4 kPa Static Pressure 102.4 kPa

Random Incidence Sound Absorption Coefficient

Sample In

Frequency	α_{S}
[Hz]	ως
50	0.04
63	0.17
80	0.17
100	0.53
125	0.72
160	0.95
200	1.09
250	1.23
315	1.24
400	1.24
500	1.25
630	1.21
800	1.17
1000	1.12
1250	1.10
1600	1.08
2000	1.09
2500	1.11
3150	1.12
4000	1.12
5000	1.09

Signed:

Test reference: 06199-6030 Date: 24 May 2023

University of Salford, School of Computing Science & Engineering

BS EN ISO 11654:1997

Acoustics - Sound absorbers for use in buildings

Client: GIK Acoustics Europe

Unit F, Perseverance Mills, Giles Street, Wibsey,

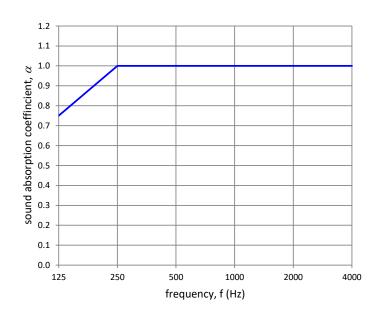
BD06 3HS

Sample Reference: 244

Description of Sample: Absorption Panels - Type A Mounting

Frequencies 50, 63 and 80Hz not accredited

Room Volume: 220 $\,\text{m}^3$ Location: Acoustic Transmission Suite Sample Size: 10.99 $\,\text{m}^2$ Test Room Large reverberation Room


Sample Thickness: 115.0 mm Condition: Clean

Sample Out Sample In

Temperature20.9 °CTemperature20.8 °CRelative Humidity50.2 %Relative Humidity46.8 %Static Pressure102.4 kPaStatic Pressure102.4 kPa

Random Incidence Sound Absorption Coefficient

Frequency [Hz]	$lpha_{\it pi}$
125	0.75
250	1.00
500	1.00
1000	1.00
2000	1.00
4000	1.00

 $\alpha_w = 1.00$

Classification: A

Signed:

Test reference: 06199-6030 Date: 24 May 2023

University of Salford, School of Computing Science & Engineering